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Abstract

Predicting temporal progress from visual trajectories is important for intelligent robots that
can learn, adapt, and improve. However, learning such progress estimator, or temporal value
function, across different tasks and domains requires both a large amount of diverse data and
methods which can scale and generalize. To address these challenges, we present Generative
Value Learning (GVL), a universal value function estimator that leverages the world knowledge
embedded in vision-language models (VLMs) to predict task progress. Naively asking a VLM
to predict values for a video sequence performs poorly due to the strong temporal correlation
between successive frames. Instead, GVL poses value estimation as a temporal ordering problem
over shuffled video frames; this seemingly more challenging task encourages VLMs to more fully
exploit their underlying semantic and temporal grounding capabilities to differentiate frames based
on their perceived task progress, consequently producing significantly better value predictions.
Without any robot or task specific training, GVL can in-context zero-shot and few-shot predict
effective values for more than 300 distinct real-world tasks across diverse robot platforms, including
challenging bimanual manipulation tasks. Furthermore, we demonstrate that GVL permits flexible
multi-modal in-context learning via examples from heterogeneous tasks and embodiments, such
as human videos. The generality of GVL enables various downstream applications pertinent to
visuomotor policy learning, including dataset filtering, success detection, and advantage-weighted
regression – all without any model training or finetuning.

1. Introduction

Predicting temporal progress from visual trajectories is an important task for embodied agents that
interact with the physical world. A robot capable of generalizable progress estimation can in principle
discern desirable and undesirable behaviors to learn visuomotor skills in new environments. This is
most often studied in reinforcement learning literature [51], where progress estimation is equivalent
to universal value learning under specific choices of reward function. However, universal value
estimation comes with a number of key challenges: (1) broad generalization to new tasks and scenes,
(2) the ability to accurately estimate state in partially observed environments, and (3) temporal
consistency (i.e. satisfying the Bellman equation) over long horizons. Most existing methods trained
on relatively small amounts of vision-only data [8, 40, 1] lack the semantic, spatial, and temporal
understanding needed to ground task progress in the space-time manifold of video, preventing
generalization. Moreover, they often reason over single frames, inducing a high-degree of uncertainty
in partially observed environments which in turn can effect the consistency of predictions for poorly
estimated states. However, these challenges are not insurmountable: modern vision language models
(VLMs) exhibit marked generalization and reasoning capabilities, potentially making them useful for
value estimation.

Though not often considered as candidates for value estimation, VLMs excel at its aforementioned
core challenges. First, state-of-the-art VLMs have exhibited strong spatial reasoning and temporal
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Figure 1 | Result highlights. GVL can effectively zero-shot and few-shot predict task progress on diverse and
challenging real-world tasks; these capabilities enable expansive set of downstream applications, including
dataset filtering, success detection, and policy learning.

understanding capabilities across various vision tasks [44, 9, 25, 21], allowing them to generalize
to novel scenarios. Second, large transformer-based VLMs have the requisite context window [22]
to reason over large amounts of historical information to accurately estimate state from observation
sequences when predicting task progress. Finally, VLMs make predictions auto-regressively, meaning
they commit to their own outputs as inputs for subsequent predictions, imposing consistency constraints
on long generations. For example, a VLM is unlikely to estimate that a task is 50% completed if it
already has a 50% completion prediction in context. However, how exactly a VLM should be used to
predict values is unclear. Empirically, we find that simply placing a video in-context and prompting
the model to return progress predictions for each frame fails – our analysis suggests strong temporal
correlations between successive frames often cause VLMs to produce uninformative monotonic values
that disregard the actual quality of the trajectory and differences between frames (Section 4) – and a
different approach is needed.

To effectively leverage the broad knowledge of VLMs, we introduce Generative Value Learning
(GVL), a universal value estimation method enabled by long-context VLMs, which crucially operates
over shuffled frames. At its core, GVL asks frozen state-of-the-art VLMs, such as Gemini-1.5-Pro [22],
to auto-regressively predict the completion percentage of a task specified in natural language for
a sequence of shuffled input video frames; see Fig. 2. Perhaps surprisingly we find that simply
shuffling the frames of the input video effectively overcomes the strong implicit temporal bias found
in video, enabling VLMs to generate meaningful values. While GVL is capable of generating values
in a zero-shot manner, we find that the performance of GVL scales with examples via multi-modal
in-context learning. Providing more examples of visual “unshuffling” in context increases performance,
irrespective of the target embodiment. For example, human videos can improve GVL’s performance
on predicting robot task progress.
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Figure 2 | Method overview. Generative Value Learning (GVL) generates values by auto-regressively predicting
task completion percentage over shuffled frames, enabling impressive in-context value learning.

To facilitate large-scale value prediction evaluation, we additionally introduce a new evaluation
metric, Value-Order Correlation (VOC), measuring how well predicted values correlate with the
ground-truth timestep order in expert videos; as we will show, VOC is also a useful metric for
measuring dataset and trajectory quality, which allows GVL to be used for applications beyond value-
based policy learning such as data quality estimation and success detection. We first evaluate GVL’s
value prediction quality with VOC on a large suite of real-world robotics datasets, spanning 51 datasets,
20 embodiments, and more than 300 tasks. This includes 50 datasets from Open-X (OXE) dataset
[45] in addition to our own bimanual manipulation dataset containing 250 challenging real-world
tasks on an ALOHA platform [71], which are considerably longer horizon and more fine-grained than
those in the OXE dataset. In aggregate, GVL exhibits strong zero-shot value prediction capabilities
with highly positive VOC scores on most datasets; its performance further improves with various
types of multi-modal in-context examples. Using GVL, we demonstrate scalable foundation model
supervision for robot learning at various data abstraction levels. Specifically, GVL can help measure
dataset quality in OXE. Second, it can be used for success detection, enabling imitation learning on
mixed-quality datasets. Finally, the raw value estimates from GVL can be used for advantage-weighted
regression for real-world offline reinforcement learning [47, 46].

In summary, our contributions are
1. Generative Value Learning (GVL), a universal value prediction framework via VLM in-context

autoregressive value estimation on shuffled video frames.
2. An extensive evaluation on real-world datasets demonstrating GVL’s zero-shot scalability and

multi-modal in-context learning capabilities.
3. Demonstration that GVL can be used in downstream applications including dataset quality

estimation, success detection, and advantage-weighted regression for real-world control.
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2. Related Work

Reward and value foundation models. Several works have tried to learn transferable reward and
value functions from diverse data. Early works learned models using robot [52] or even human videos
with discriminators [8], contrastive learning [3] or offline RL [40, 41, 4] to guide manipulation tasks.
With the advent of recent language and vision foundation models, several works have integrated them
into various robotic applications such as semantic planning [1, 27, 56, 70, 14], imitation learning
[6, 57], and symbolic programming [58, 36, 56, 63, 26, 39, 55, 14, 38, 67]. Most related to our
work, LLMs and VLMs have been used as reward models. Kwon et al. [34], Mahmoudieh et al. [43]
use language models to provide reward values for RL agents, while Klissarov et al. [32], Wang et al.
[64], Kwon et al. [34] use them to provide preference feedback. Ma et al. [42], Yu et al. [69], Xie
et al. [66] even have LLMs generate their code. These works use only the language capabilities of
foundation models. More recent works directly use VLMs as zero-shot reward models [50] or success
detectors [15, 23]. Critically, in these works the VLM acts only as an (often sparse) reward function
which predicts success, and not a value function that predicts task progress. Though some works
use chain-of-thought prompting [61] or active learning [33], they generally do not make use of the
autoregressive, long-context, or in-context learning capabilities of state-of-art VLMs. As a consequence,
they often evalaute reward prediction only on simple and simulated tasks. To our knowledge, we are
the first to demonstrate that VLMs are capable of generalizable per-frame value estimation on real
world tasks which can be used for downstream tasks like dataset selection.

In-context learning for robotics. In-context learning has been explored in the robot learning
literature, primarily focusing on action generation [16, 19, 11, 68, 13, 37, 20]. However, all these
prior works require explicit, and often extensive training, on their robot tasks in order to realize
in-context learning capabilities, and generalization is achieved only on narrow distribution of tasks. In
contrast, we demonstrate that visual value estimation already enjoys flexible multi-modal in-context
learning from pre-trained VLMs without any robot specific fine-tuning.

3. Generative Value Learning

In this section, we introduce Generative Value Learning, GVL. At a high level, GVL frames value
estimation as an autoregressive next-token prediction problem inwhich a VLM is taskedwith outputting
the task progress for a batch of shuffled trajectory frames.

Problem setup. We model robotics tasks as goal-conditioned partially observed Markov decision
processes [48]: M(𝜙) := (𝑂, 𝐴, 𝑅, 𝑃, 𝑇𝜇, 𝐺) with observation space 𝑂, action space 𝐴, reward function
𝑅, transition function 𝑃 , task horizon 𝑇, initial state distribution 𝜇(𝑜), and goal space 𝐺 that specifies
the task semantically. Conditioned on a task 𝑔 an agent 𝜋 : 𝑂 → 𝐴 aims to maximizes its value function,
or the expected cumulative reward over the task horizon, 𝑉𝜋(𝑜1; 𝑔) = 𝔼𝜇,𝜋,𝑃 [𝑟(𝑜1; 𝑔) + · · · + 𝑟(𝑜𝑇 ; 𝑔)].
However, reward and value functions can be difficult to define for robotics applications given their
heterogeneity. Given this, a popular universal notion of value is task progress [52, 53, 18, 60, 35]. This
kind of temporal value function maps an observation and goal specification to a real number between
0 and 1: 𝑉 : O × G → [0, 1], where initial observations of the environment have value 0 and goal-
satisfying observations have value 1. Under this definition, an expert trajectory 𝜏 = (𝑜1, . . . , 𝑜𝑇 ) ∼ 𝜋𝐸,
has value function 𝑉𝜋𝐸 (𝑜𝑡; 𝑔) = 𝑡

𝑇
. In this work, our goal is to obtain such a temporal value function

𝑉 that can predict such task progress 𝑣1, . . . 𝑣𝑇 for each frame of video 𝑜1, . . . , 𝑜𝑇 .
Though we seek to leverage priors imbued in large foundation models, as shown in Section 4

simply prompting a VLM with video frames fails to produce meaningful estimates. To make VLMs
amenable to value prediction, we propose three key components that comprise the GVL method: 1)
autoregressive value prediction, 2)input observation shuffling, and 3) in-context value learning.
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1. Autoregressive value prediction. Traditionally, value functions 𝑉 (·) : O → ℝ are trained to be
self-consistent by enforcing the bellman equation

𝑉𝜋(𝑜𝑡) = 𝑅(𝑜𝑡) + 𝔼𝜋,𝑃 [𝑉 (𝑜𝑡+1)] . (1)

When parameterizing a value function as a feed-forward neural network, this is typically done
by minimizing the mean-squared error of the equality above. As values for different observations
within the same trajectory are related via the bellman equation, the resulting value function remains
consistent even if we query it with only a single observation. VLMs on the other hand are not
inherently trained with any consistency objective. Thus, if we independently query a VLM with
different observations from the same trajectory it is likely to produce inconsistent values. Our insight
is that providing the entire trajectory as input instead of just a single observation offers VLMs greater
opportunity to generate self-consistent value estimates. Concretely, given a language description of
the task 𝑙task we ask the VLM to auto-regressively generate values given the entire video as context:

𝑣𝑡 = VLM(𝑜1, . . . , 𝑜𝑇 ; 𝑣1, . . . , 𝑣𝑡−1; 𝑙task),∀𝑡 ∈ [2, 𝑇]. (2)

We abbreviate this auto-regressive prediction process as 𝑣1, . . . , 𝑣𝑇 = VLM(𝑜1, . . . , 𝑜𝑇 ; 𝑙task). This simple
mechanism allows the VLM to attend to all previous predictions and frames when making the next
value prediction, enabling it to produce globally consistent estimates over long-horizon sequences
without needing to be trained like classical feed-forward value functions. Though this design choice
enables VLMs to produce consistent values, it doesn’t necessitate that the values are meaningfully.
Naiv̈ely prompting a VLM in this manner tends to produce linear, monotonic value functions for every
single video, regardless of optimality.

2. Input observation shuffling. Empirically we find that when presented a choronological
sequence of frames VLMs discover the short-cut solution of outputting monotonically increasing
values, often ignoring the task description or the actual quality of the trajectory. One hypothesis is that
as VLMs are trained on ordered video frames for captioning and question answering, the chronology
itself is a cue for downstream tasks unrelated to value prediction. As a consequence, model naiv̈e
prompting results in unfaithful low-quality value predictions. To break this temporal bias, we propose
randomly shuffling the input frames. In this manner, GVL forces the VLM to pay attention to each
individual frame and output faithful value predictions using all information provided in context.
Concretely, GVL prompts a VLM as:

𝑣1̃, . . . , 𝑣𝑇 = VLM(𝑜1̃, . . . , 𝑜𝑇 ; 𝑙task, 𝑜1), where (1̃, . . . , 𝑇) = permute(1, . . . , 𝑇). (3)

where the permute operator randomly shuffles the temporal indicies. Note however, that we cannot
shuffle every frame. If we do so, then the arrow of time in the original video can be ambiguous –
i.e., in many cases, the reverse video is also physically plausible, making is the ground-truth order
impossible to predict. Thus, as in the above equation we condition the VLM on the first input frame
allow it to use the first observation as an anchor point for all other shuffled frames.

3. In-context value learning. While auto-regressive prediction and shuffling are enough to
obtain good performance, GVL can perform even better by leveraging the appealing properties of
VLMs. Notably, large models often exhibit in-context learning, where tasks can be learned by simply
providing examples [7]. This enables flexible and versatile in context value learning, by which GVL’s
predictions can steadily improve by providing examples at test time without any model fine-tuning. In
particular, we can simply prepend shuffled videos and their ground-truth task progress as in-context
examples to boost the value prediction quality via few-shot learning:

𝑣1̃, . . . , 𝑣𝑇 = VLM (︁
𝑜1̃, . . . , 𝑜𝑇 , 𝑙task | permute ((𝑜1, 𝑣1), (𝑜2, 𝑣2), . . . , (𝑜𝑀 , 𝑣𝑀))

)︁ (4)
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As we show in Section 4, GVL benefits from flexible forms of in-context examples, including videos
from unrelated tasks and even humans. Though GVL zero-shot is already effective across a broad
range of tasks and robots, in-context learning can still realize substantial improvement on the most
difficult bimanual dexterous tasks.

Practical implementation. To predict temporal value functions in practice, GVL asks the VLM to
output integer-valued percentage numbers between 0 and 100. Given that real-world robot video
datasets are of different lengths and taken at different frequencies, we subsample all videos so that
there are 30 frames in the input sequence to ensure comparable findings across datasets. See the
Appendix for the full prompt and implementation.

4. Experiments

We conduct large scale experiments assessing GVL’s value prediction generalization and in-context
learning capabilities. Specifically, we study the following questions:

1. Can GVL produce zero-shot value predictions for a broad range of tasks and embodiments?
2. Can GVL improve from in-context learning?
3. Can GVL be used for other downstream robot learning applications?
In all our experiments, we use Gemini-1.5-Pro [22] as the backbone VLM for GVL; we ablate

this model choice and find GVL effective with other VLMs as well. After thorough study of GVL’s
value prediction capabilities, we study several downstream applications in visuomotor policy learning,
aiming to improve data quality at dataset, trajectory, and individual transition levels.
Evaluation metric. Our goal is to evaluate GVL value estimation at scale on as many robot datasets
as possible, holistically testing its generalization capabilities and understanding its limitations. This
makes it difficult to use traditional evaluation metrics for value functions, such as observing down-
stream learned policy performance, as they require value functions that are specifically trained or
finetuned for individual tasks and embodiments. This quickly becomes very expensive for universal
value functions that are intended for use across a large set of diverse real-world tasks and robots,
many of which the practitioner may not have access to. Prior works on large-scale value learning have
resorted to visually observing the smoothness of the value curve on expert trajectories as a qualitative
“eye-test” for model generalization [40, 41, 29], but such evaluation is conducted on only few selected
videos. We formalize and scale up this intuitive approach and introduce a lightweight, yet predictive
method for evaluating value models: Value-Order Correlation (VOC). This metric computes the rank
correlation between the predicted values and the chronological order of the input expert video:

VOC = rank-correlation
(︁
argsort(𝑣1̃, . . . , 𝑣𝑇 );arange(𝑇)

)︁ ; (5)

VOC ranges from −1 to 1, where 1 indicates that the two orderings are perfectly aligned. Expert
quality demonstrations, by construction, have values that monotonically increase with time, and thus
a good value model should have high VOC scores when evaluated on expert videos. On the other
hand, fixing a good value model, low-quality trajectories should have low VOC scores. This is because
sub-optimal trajectories often contain high repetition of visually similar frames due to the presence of
redundant, re-attempt actions or poorly-placed cameras. As such, the values along the trajectories
should not be monotonic, resulting in low correlation with the ground-truth timestep order. As we
will show in our experiments, this value rank correlation metric has strong predictive power for the
quality of the values as well as downstream policy learning performance, validating its usefulness as
a standalone evaluation metric for value predictions.
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Figure 3 | Zero-shot value predictions on OXE datasets. Left: GVL significantly outperforms LIV on datasets
with language goals. Right: GVL still outperforms LIV on datasets with image goals despite solving the more
difficult task of frame re-shuffling.

4.1. Large-scale real-world evaluation

To study GVL’s zero-shot value prediction capability, we evaluate its VOC on two large expert robotics
datasets.

Open X-Embodiment dataset. First, we consider the Open X-Embodiment (OXE) dataset [45].
an aggregation of trajectory data from 50 standalone academic robot datasets that consists of diverse
tasks, robots, and camera viewpoints. For each of the 50 datasets, we randomly sample 20 trajectories
and evaluate GVL zero-shot on each of the sampled trajectories. Note that not all OXE datasets have
language task annotations, so we use the last frame of the trajectory as the goal specification when
text annotation is not provided. To better contextualize GVL’s value prediction quality, we compare
to a state-of-the-art multi-modal value model LIV [41], a contrastive vision-language model [49]
fine-tuned with value learning objective on human videos for in-the-wild value estimation. LIV predicts
the temporal value of an input observation by computing its embedding distance to the embedding of
the goal image or task description.

For evaluation, we plot the histogram of all 1000 (50×20) Value Order Correlation (VOC) scores
in Fig. 3, split by goal modalities. Given that most OXE datasets contain human-collected expert
demonstrations, good value models should have high VOC scores; however, we acknowledge that there
are sub-optimal trajectories within OXE that can introduce noise in our results. After we first establish
GVL as an effective universal value model. we will present how GVL can be used to detect low-quality
data in Section 4.3. As shown in Fig. 3, on both goal modalities, GVL consistently generates VOC scores
that heavily skew to the right, indicating that it is able to zero-shot recover the temporal structure
hidden in the shuffled demonstration videos, i.e., coherent value predictions. GVL’s performance is
also markedly better than LIV on language goals (Fig. 3 left). Here, LIV’s predictions are random,
suggesting that its embedding space does not contain sufficient knowledge for predicting dense values
for arbitrary unseen robot videos. On image goals, LIV’s prediction problem is arguably simpler
because an embedding space that simply captures image similarity can result in ascending values
that correlate with timesteps. Even then, GVL generates better quality value predictions as judged
by slightly higher VOCs (Fig. 3 right). In summary, GVL can indeed effectively utilize the world
knowledge afforded by the backbone VLM to achieve effective value predictions zero-shot for the
breadth of real-world robotic tasks and datasets.

Challenging bimanual datasets. OXE datasets primarily focus on simpler, short horizon single-
arm tasks. To further stress test GVL, we evaluate on a new diverse dataset of 250 distinct household
tabletop tasks on the bi-manual ALOHA systems [71, 2]. This dataset includes highly challenging,
long-horizon skills, such as removing three gears sequentially from a NIST board, folding a dress in
eighth-fold, hanging a t-shirt on a cloth rack. See the bottom right of Fig. 2 for representative ALOHA
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tasks. For each task, we evaluate on 2 human teleoperated demonstrations to evaluate GVL zero-shot.
The aggregate histogram over all 500 (250 × 2) VOC scores is illustrated in Fig. 4. As shown, GVL is
capable of generating value predictions that are positively correlated on more than 60% of them with
median VOCs of 0.12. This is promising, but worse than the performance on the OXE datasets. While
our main results use the top-down camera shown in Fig. 6, we show the effect of using GVL across
each of the four cameras used in our ALOHA setup in Fig. 15. In Fig. 5, we present several qualitative
examples of GVL predictions; see our project website for additional examples. In the next section, we
extensively explore how to improve GVL on this dataset using in-context learning techniques.
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Figure 4 | GVL scales up to 250 ALOHA bi-manual tasks and can improve with in-context examples.

4.2. Multi-Modal In-Context Value Learning

As the diverse ALOHA dataset is significantly more challenging, we explore whether GVL can benefit
from in-context learning, where additional shuffled observation-value pairs are presented in the VLM
context window (Eq. 4).

Few-shot in-context learning. First, we collect an additional demonstration for each of the 250
tasks and use its shuffled value-observation pairs as context for one-shot GVL value prediction for
the same set of 500 evaluations. As seen in Fig. 4, with one in-context trajectory, GVL’s performance
substantially improves with 90% positive VOCs and a median VOC of 0.37. We further investigate
whether performance can improve with more in-context examples on a represented subset of 13
tasks for which have more than 500 demonstrations. For these tasks, we evaluate few-shot GVL on
500 distinct trajectories per task with up to 5 in-context examples. The average VOCs over tasks and
trajectories is shown in Fig. 4 (Right). We see that GVL demonstrates appealing in-context scaling as
the average score steadily improves as we increase the number of in-context examples. Even with 5 in-
context trajectories, meaning 150 total shuffled images, GVL is able to utilize its full context and exhibit
strong generalization. This result demonstrates how state-of-art long-context-window VLMs, such as
Gemini-1.5-Pro, can be re-purposed to make for general-purpose value functions with impressive
test-time improvement capability, quickly mastering value predictions with minimal supervision.

Cross-embodiment in-context learning. Examples in-context are not limited to robot demon-
strations. One advantage of GVL is that it can still benefit from in-context learning even when the
demonstrations come from a different embodiment. Specifically, we record humans performing the
same tasks as the ALOHA robot demonstrations and then use these human demonstrations as in-
context examples for value prediction. As shown in Fig. 6, GVL with one cross-embodiment in-context
example can effectively improve over its zero-shot counterpart. In the Appendix, we also show that
GVL can similarly benefit from cross-task in-context learning. In conclusion, GVL presents a versatile
framework for in-context value learning that can scale up to even the most challenging manipulation
tasks.

8
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(a) fold_dress from the top-down view. (b) pen_handover from the table view.

(c) close_laptop from the right wrist camera. (d) remove_gears from the left wrist camera.

Figure 5 | Example GVL predictions on real-world ALOHA tasks. GVL can successfully unshuffle video frames
and generate meaningful task values on diverse tasks and camera viewpoints.
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Figure 6 | GVL benefits from cross-embodiment in-context learning capability: its value predictions can be
improved by examples from human videos.
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4.3. GVL Applications

As GVL can generate high-quality value estimates, it can be applied to a number of downstream tasks
including dataset quality estimation, success detection, and weighted imitation learning.

Dataset Avg. VOC
RT-1 [5] 0.74
Dobb-E [54] 0.53
Bridge [62] 0.51
QT-OPT [28] 0.19
DROID [30] -0.01
RoboNet [12] -0.85

Table 1 | Average Value-Order Correlation (VOC) scores
on selected OXE datasets. As shown, demonstration
datasets with un-occluded camera views generally have
high scores. In contrast, exploration datasets have low
scores.

Dataset Quality Estimation. Robotic action
models are increasingly trained on large mix-
tures of datasets [45, 59, 31] and selecting the
right mixture is critical for policy performance
[24]. However, dataset mixing is often done
in an ad-hoc fashion by visual inspection [59].
Having validated that GVL is an effective zero-
shot value model, we investigate whether we
can in turn use GVL’s VOC scores to determine
dataset quality within OXE. To this end, for each
OXE dataset in Fig. 3, we compute the average
correlation scores for its sampled trajectories
and present the ranking of the average score
in Appendix B. In Table 1, we present a subset
of selected representative large-scale datasets
in OXE. We see that datasets have large spread in their VOC scores, but these scores are interpretable
and match human intuitions. Specifically, datasets collected from human teleoperators with relative
fixed camera placements, such as RT-1 [5], Dobb-E [54], and Bridge [17, 62], have high VOC scores,
despite their diversity in scenes and tasks. In contrast, datasets with autonomous data collection via
scripted motions or motor babbling, such as QT-OPT [28] and RoboNet [12], contain high number of
suboptimal trajectories that do not exhibit smooth temporal structure to be re-shuffled.

Interestingly, DROID [30], a recent large household manipulation ataset is ranked very low,
consistent with prior works [31] that found that removing DROID from large action model training
improved final performance. After inspecting trajectories from DROID with a low VOC score from
GVL we found that many have poor camera angles that do not capture robot motion or have the arm
or manipulated objects heavily occluded. These observations indicate that GVL VOC can be indicative
of dataset quality.

Method Accuracy Precision Recall
GVL-SD (Zero-Shot) 0.71 0.71 0.71
GVL-SD (One-Shot) 0.75 0.85 0.70
SuccessVQA [15] 0.62 0.33 0.73
SuccessVQA-CoT 0.63 0.44 0.68

Table 2 | Comparison of VLM success detectors.

Success detection and filtered imitation
learning. Next we consider more granular intra-
dataset quality control by investigating howGVL
can be used as a success detector for trajectory
filtering, enabling filtered imitation learning
on mixed quality datasets. As discussed, good
value models should return low VOC scores on
unsuccessful trajectories; in particular, it is dif-
ficult for GVL to re-shuffle frames within sub-
optimal trajectories which often contain irregu-
lar or repetitive behavior. Thus, we can use GVL for success detection by filtering trajectories that have
VOC scores below certain numerical threshold; we refer to this procedure as GVL-SD. We evaluate
GVL-SD on six simulated bimanual dexterous manipulation tasks on the ALOHA system (see Fig. 10).
Simulation is well-suited for this experiment because we can naturally control for data quality and
reproducibility. More specifically, for each task, we construct a mixed quality dataset by rolling out
a pre-trained policy of roughly 50% success rate for 1000 episodes, mirroring real-world autonomous
data collection settings with high failure rate [28]. We compare to SuccessVQA [15], which poses
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success detection as a Visual-Question Answering problem. To ensure that the same amount of infor-
mation is provided, we feed the full video sequence to the VLM; therefore, this baseline tests whether
the VLM is equipped with video understanding capability good enough for out-of-the-box success
detection. In addition, we consider SuccessVQA-CoT, which uses chain-of-thought prompting [65]
to encourage the VLM to output intermediate textual reasoning outputs before providing the final
success answer. Unless otherwise stated we use a VOC threshold of 0.5 for GVL-SD.
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Figure 7 | GVL for Success Detection. Left: GVL behaves qualitatively differently on successful and failed
trajectories. Right: GVL (No-Shuffling) loses discriminability on failure trajectories.

Real-World ALOHA Tasks GVL + DP DP Avg. VOC
bowl-in-rack 7/10 6/10 0.57
banana-handover 7/10 5/10 0.73
close-laptop 9/10 6.5/10 0.59
open-drawer 4/10 6/10 0.09
remove-gears 4.67/10 7/10 0.19
pen-handover 1.5/10 0/10 0.43
fold-dress 7/10 7/10 0.66

Table 3 | Real-World ALOHA Policy Learning Results.
AWR with GVL (One-Shot) outperforms IL baselines
when the predicted values have high VOCs.

For all methods, we report the accuracy,
precision, and recall in Table 2. GVL-SD con-
sistently outperforms or matches SuccessVQA
on all classification metrics. In particular, Suc-
cessVQA has low precision, indicating that the
base VLM systematically biases towards out-
putting failure. Adding one in-context demon-
stration further improves GVL’s performance
across all metrics. In Fig. 7 (Left), we also vi-
sualize the histogram of the VOC scores GVL
produces on success and failure trajectories. As
expected, GVL on failure trajectories renders a
uniform distribution when the task is unsuccess-
ful, indicating the model’s inability to uncover the original temporal order – success and failure
trajectories have distinct distributions over the correlation values indicating that GVL can adequately
separate them. Fig. 7 (Right) shows that the histograms without shuffling are largely the same
independent of success or failure. This shows that by forcing the VLM to perform the more difficult
prediction task over shuffled frames, GVL can elicit better zero-shot values.

Now, we use the above success detection methods for filtered imitation learning; for all meth-
ods, we use Action Chunking Transformer (ACT) as the imitation learning algorithm [71]; ACT
hyperparameters are tuned for ACT on the success-only subset and are fixed for all methods. Given
the noisiness in model checkpoints performance, we report the average success rate of the last 10
model training checkpoints. Results for the six simulation tasks are shown to the right of Fig. 8,
where GVL-SD’s improved success detection leads to better performance over SuccessVQA. In fact,
SuccessVQA often hurts performance, likely because of its low precision which causes the policy to
train on a high number of false positive (i.e. failure) trajectories. In Fig. 8 (Right) we show the effect
of varying the VOC threshold in {−1.0, 0, 0.25, 0.5, 0.75} in comparison to training on all the data
with ACT; note that this is the same using the lowest threshold, −1.0 as it is a lower bound on the
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Figure 8 | Success-Filtered Imitation Learning on ALOHA Simulation Tasks. Left: Using GVL-SD for success-
filtered BC substantially outperforms SuccessVQA. Right: GVL-SD is not sensitive to the VOC threshold for
improving imitation learning.
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Figure 9 | Real-world ALOHA tasks for real-word policy evaluation.

VOC metric. As seen, GVL consistently outperforms ACT regardless of threshold values; when the
threshold value is too high, i.e., 0.75, we see a slight dip in performance when the overall dataset
size becomes too small.

Advantage-weighted regression for real-world visuomotor control. Finally, we illustrate how
GVL can assign importance weights to individual transitions within trajectories at a fine-grained level
akin to offline reinforcement learning. For these experiments we use real-world demonstration data
collected by human teleoperation on bi-manual ALOHA robot setups. Unlike simulation, our datasets
only contain successful task executions but can be sub-optimal and multi-modal. Thus, we directly
utilize GVL’s values with advantage weighted regression (AWR) [47, 46], in which we weight each
individual transition by the estimated advantange, or GVL value difference for that step:

L(𝜃) := −𝔼 [exp (𝜏 · (𝑣𝑘+1 − 𝑣𝑘)) · log𝜋𝜃(𝑎𝑘 | 𝑜𝑘)] (6)

If an action were deemed to make progress towards the task goal, then its future value 𝑣𝑘+1 should
be significantly higher than the present value 𝑣𝑘, leading to a large positive weight. By upweighting
the most promising actions in diverse human-collected datasets, we posit that AWR can outperform
imitation learning approaches.

We use diffusion policy (DP) as the policy backbone [10] for each task, and compare training
diffusion policies with GVL (One-Shot) advantage weighting or lack thereof. We evaluate on 7 tasks
with 10 trials per task and report success rate in Table 3. As can be seen, on a majority tasks, GVL-DP
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outperforms DP and we see a clear correlation between improvement over DP and the VOC score.
That is, when the value predictions are of high quality as judged by VOC, policy learning can benefit
from GVL value weighting. On open-drawer and remove-gears, the top-down view does not
provide sufficient resolution to distinguish task progress (see Fig. 9), as a consequence, the value
predictions can be noisy, which can hurt policy learning. However, given the in-context learning
results, we believe that it is possible to improve policy learning even on difficult tasks with non-ideal
camera viewpoints.

4.4. Ablations

Finally, we ablate key algorithmic design choices of GVL to validate their necessity. In the Appendix,
we additionally demonstrate that GVL’s performance is robust to the choice of backbone VLMs as well
as input camera viewpoint.

Is autoregressive value prediction necessary? We consider an ablation that simply asks the
VLM to predict values of input observations one by one without GVL’s autoregressive batch prediction
mechanism. This ablation, which we refer to as VLM (Single Frame), essentially poses value estimation
as a VQA problem. We compare this ablation to GVL on a subset of RT-1 dataset as in Section 4.1; the
average VOC for VLM (Single Frame) is a mere −0.08, a significant drop from GVL’s 0.74 on RT-1
dataset. As seen, pre-trained VLMs by themselves are poor value estimators, generating inconsistent
values that are too noisy to be used in practice.

Is input observation shuffling necessary? As discussed, we find that removing shuffling collapses
ICV’s predictions into generating degenerate values; that is, regardless of the quality of the provided
trajectory, GVL tends to predict monotonically increasing values, resulting in inflated VOC scores
that cannot be used to discriminate successful and failure trajectories.; see Fig. 7 (Right). To further
qualitatively illustrate this phenomenon, in Fig. 11 in the Appendix, we overlay raw GVL value
predictions with frame shuffling and lackthereof to understand the spread of the value curves. We see
that the overlay for original GVL looks “messy”, suggesting that GVL outputs varied value curves that
better capture the heterogeneity of the queried video qualities. In contrast, without frame shuffling,
GVL predictions indeed collapses onto a few linear ascending patterns.

5. Conclusion

We have introduced Generative Value Learning (GVL), a universal value function via VLM autore-
gressive value prediction on shuffled video frames. GVL can zero-shot output dense and high-quality
value predictions for diverse and challenging real-world robotic tasks, spanning various robot embodi-
ments and task categories. With few-shot learning from the same task, different task, or different
embodiment, GVL performance steadily improves. We have demonstrated several use cases of using
GVL to perform dataset, trajectory, and transition selection to improve downstream policy learning
performance and generalization. We believe that GVL takes an important step in using foundation
models supervision for robot learning.

Limitations and future work. We have not investigated whether pre-trained VLMs can be fine-
tuned to perform better value predictions. In addition, though we test on diverse camera viewpoints,
we have not yet investigated whether multi-view observations can improve value prediction quality.
In addition, our evaluation metric Value-Order Correlation is most suitable for a-periodic tasks for
which there exists a unique ordering of frames from an expert demonstration. Tasks such as wiping or
stirring may be hard to discern. Though these limitations present avenues for future work, we believe
GVL is a step towards improved in-the-wild value estimation.
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A. Prompt

In this section, we provide the full prompt provided to the VLM for GVL predictions. The same prompt
is used for all OXE datasets.

You are an expert roboticist tasked to predict task completion
percentages for frames of a robot for the task of {task_description}.
The task completion percentages are between 0 and 100, where 100

corresponds to full task completion. We provide several examples of
the robot performing the task at various stages and their
corresponding task completion percentages. Note that these frames are
in random order, so please pay attention to the individual frames

when reasoning about task completion percentage.

Initial robot scene: [IMG]

In the initial robot scene, the task completion percentage is 0.

Now, for the task of {task_description}, output the task completion
percentage for the following frames that are presented in random
order. For each frame, format your response as follow: Frame {i}:
Frame Description: {}, Task Completion Percentages:{}%

Frame 1: [IMG]
...
Frame n: [IMG]

B. GVL OXE Dataset VOC Breakdown

In this section, we provide the full list of average VOC score for each OXE dataset. In Appendix B, we
provide the VOC scores for GVL with Gemini-1.5-Pro as the backbone VLM. In Table 5, we provide
the VOC scores for GVL with GPT-4o as the backbone VLM.

C. Simulation Tasks

In Figure 10, we illustrate the six simulation tasks used for the success detection and filtered imitation
learning experiment. For each task, we use VR teleoperation to collect 500 trajectories for initial
policy training. After the policy converges, we rollout the last checkpoint for 1000 imtes, resulting in
naturally balanced mix-quality datasets of about half success and half failure trajectories.

D. Additional Results

In this section, we present additional results and analysis.
GVL and No-Shuffling ablation qualitative comparison. As shown in Fig. 11, GVL generates

value predictions that are varied over time; in contrast, without frame shuffling, the predictions all
collapses onto a few monotonic patterns.
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Dataset VOC Score

utokyo_pr2_opening_fridge_converted_externally_to_rlds 0.8095
utokyo_xarm_bimanual_converted_externally_to_rlds 0.7955
utokyo_xarm_pick_and_place_converted_externally_to_rlds 0.7880
fractal20220817_data 0.7385
maniskill_dataset_converted_externally_to_rlds 0.7260
berkeley_autolab_ur5 0.7185
nyu_door_opening_surprising_effectiveness 0.6685
utokyo_pr2_tabletop_manipulation_converted_externally_to_rlds 0.5875
utaustin_mutex 0.5810
iamlab_cmu_pickup_insert_converted_externally_to_rlds 0.5585
fmb 0.5555
ucsd_kitchen_dataset_converted_externally_to_rlds 0.5295
dobbe 0.5295
toto 0.5270
bridge 0.5145
austin_sirius_dataset_converted_externally_to_rlds 0.5100
asu_table_top_converted_externally_to_rlds 0.5055
berkeley_rpt_converted_externally_to_rlds 0.4835
berkeley_cable_routing 0.4470
usc_cloth_sim_converted_externally_to_rlds 0.4410
jaco_play 0.4205
bc_z 0.4065
viola 0.4035
berkeley_mvp_converted_externally_to_rlds 0.3900
roboturk 0.3545
austin_buds_dataset_converted_externally_to_rlds 0.3415
stanford_hydra_dataset_converted_externally_to_rlds 0.3325
tokyo_u_lsmo_converted_externally_to_rlds 0.3140
berkeley_fanuc_manipulation 0.2685
cmu_stretch 0.2625
ucsd_pick_and_place_dataset_converted_externally_to_rlds 0.2410
kuka 0.1915
dlr_sara_pour_converted_externally_to_rlds 0.1600
taco_play 0.0945
dlr_edan_shared_control_converted_externally_to_rlds 0.0855
droid -0.0060
stanford_robocook_converted_externally_to_rlds -0.0690
imperialcollege_sawyer_wrist_cam -0.1225
kaist_nonprehensile_converted_externally_to_rlds -0.1310
austin_sailor_dataset_converted_externally_to_rlds -0.1715
cmu_play_fusion -0.3445
stanford_kuka_multimodal_dataset_converted_externally_to_rlds -0.3770
stanford_mask_vit_converted_externally_to_rlds -0.4505
nyu_franka_play_dataset_converted_externally_to_rlds -0.4555
uiuc_d3field -0.7025
cmu_franka_exploration_dataset_converted_externally_to_rlds -0.7395
columbia_cairlab_pusht_real -0.7625
robo_net -0.8485
dlr_sara_grid_clamp_converted_externally_to_rlds -1.0000

Table 4 | GVL (Gemini-1.5-Pro) OXE Dataset VOC Scores
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Dataset VOC Score

nyu_door_opening_surprising_effectiveness 0.883
utokyo_pr2_opening_fridge_converted_externally_to_rlds 0.864
berkeley_mvp_converted_externally_to_rlds 0.8285
utaustin_mutex 0.813
fractal20220817_data 0.803
utokyo_xarm_pick_and_place_converted_externally_to_rlds 0.7665
berkeley_autolab_ur5 0.755
utokyo_xarm_bimanual_converted_externally_to_rlds 0.749
utokyo_pr2_tabletop_manipulation_converted_externally_to_rlds 0.734
austin_sirius_dataset_converted_externally_to_rlds 0.7235
toto 0.713
dlr_edan_shared_control_converted_externally_to_rlds 0.6595
bridge 0.6445
berkeley_fanuc_manipulation 0.6295
berkeley_rpt_converted_externally_to_rlds 0.6235
ucsd_kitchen_dataset_converted_externally_to_rlds 0.603
roboturk 0.57
jaco_play 0.5615
iamlab_cmu_pickup_insert_converted_externally_to_rlds 0.557
uiuc_d3field 0.5395
usc_cloth_sim_converted_externally_to_rlds 0.5355
asu_table_top_converted_externally_to_rlds 0.5025
maniskill_dataset_converted_externally_to_rlds 0.499
kaist_nonprehensile_converted_externally_to_rlds 0.492
viola 0.4605
austin_buds_dataset_converted_externally_to_rlds 0.454
cmu_play_fusion 0.4235
tokyo_u_lsmo_converted_externally_to_rlds 0.3875
austin_sailor_dataset_converted_externally_to_rlds 0.3015
ucsd_pick_and_place_dataset_converted_externally_to_rlds 0.2675
berkeley_cable_routing 0.255
dlr_sara_pour_converted_externally_to_rlds 0.252
imperialcollege_sawyer_wrist_cam 0.239
robo_net 0.237
stanford_hydra_dataset_converted_externally_to_rlds 0.205
cmu_stretch 0.1895
bc_z 0.176
nyu_franka_play_dataset_converted_externally_to_rlds 0.1735
stanford_robocook_converted_externally_to_rlds 0.16
kuka 0.132
stanford_mask_vit_converted_externally_to_rlds -0.173
stanford_kuka_multimodal_dataset_converted_externally_to_rlds -0.1785
columbia_cairlab_pusht_real -0.1815
cmu_franka_exploration_dataset_converted_externally_to_rlds -0.2075
taco_play -0.2705
eth_agent_affordances -0.279
dlr_sara_grid_clamp_converted_externally_to_rlds -1

Table 5 | GVL (GPT-4o) OXE Dataset VOC Scores
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(a) single_insertion (b) double_insertion (c) mug_on_plate

(d) bowl_on_rack (e) plate_on_rack (f) glass_on_rack

Figure 10 | Simulated task setups of dexterous manipulation on the ALOHA robot.
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Figure 11 | GVL without shuffling produces uninformative monotonic values regardless of trajectory quality.
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Figure 12 | Success-Filtered Imitation Learning on ALOHA Tasks. Left: Using GVL-SD for success-filtered
BC substantially outperforms SuccessVQA. Right: GVL-SD is not sensitive to the VOC threshold for improving
imitation learning.

Zero-Shot Aloha Sim Results. In Fig. 12 we include results for GVL-SD zero-shot instead of
one-shot. The results are qualitatively similar, where GVL-SD consistently outperforms SuccessVQA,
and different VOC threshold values all provide performance gain.

Different VLM backbone. We additionally consider GPT-4o as the backbone VLM to better
understand GVL’s performance in relation to the backbone VLM model. For evaluation, we plot
the histogram of all 1000 (50×20) Value Order Correlation (VOC) scores across all trajectories in
Figure 13. As shown, GVL, independent of the backbone models, consistently generates VOC scores
that heavily skews to the right, indicating that it is able to zero-shot recover the temporal structure
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hidden in the shuffled demonstration videos, i.e., coherent value predictions.

Figure 13 | GVL has comparable performances with different backbone VLMs; the main difference is in the
backbone model’s refusal rate and conforming to the response template, which is reflected in the tall bar at
−1.0.

Cross-task in-context learning. We investigate whether examples from other tasks can also
unlock GVL’s in-context learning capability. On the previous ALOHA-13 tasks, we randomly pair
up tasks, where we draw one demonstration from one task as the one-shot in-context example for
another. Then, we compare VOCs with the original same-task one-shot setup. The results are shown
in Figure 14. We see that providing examples from a different task is still beneficial, though the
improvement is not as much as same-task examples. This is to be expected as intra-task examples still
provide clue on the output format as well as a generic notion of task progress, but such information is
not specific to the target task. That said, cross-task ICL enables the flexibility of enabling foundation
model guidance on a task without any task-specific prior.
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Figure 14 | GVL demonstrates cross-task in-context learning capability: its value predictions can be improved
by value examples from different tasks.

Does GVL work on different camera viewpoints? On our ALOHA setup, we collected all
demonstrations using four camera viewpoints. Besides the top-down view reported in the main
experiment above, we test whether GVL remains performant when using alternative viewpoints,
especially gripper views that are likely more out-of-distribution with respect to the natural images
used for VLM training. The aggregate zero-shot and one-shot results are shown in Figure 15. As seen,
on average, GVL zero-shot works best on the Table viewpoint. This is not surprising, as images taken
with the front facing table camera are arguably visually closer to naturally captured images used for
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Figure 15 | GVL works better on more in-distribution table view, but one-shot improvement benefits all camera
views.

VLM training. Yet, with in-context examples, GVL consistently improves on all camera viewpoints.
In practice, this means that GVL is robust to camera viewpoints – even when a camera viewpoint is
determined to be sub-optimal post-hoc, practitioners can make up for that by simply providing few
in-context examples.

Does GVL pay attention to the task specification? To validate that GVL is not merely recovering
the temporal coherence in the shuffled input video but actively tracking visual progress according to
the task language command, we compute the VOC scores for every combination of task input video
and language description in the ALOHA-13 split. The heatmap visualization of the average VOC for
every pairing is illustrated in Fig. 16 and Fig. 17 for GVL and the no shuffling ablation. On 9 out of
13 tasks, GVL achieves the highest VOC when the input video and the task description matches; in
many unmatched cases, the model simply refuses to output value predictions, stating that the frames
and the language description are not related. In contrast, when we do not shuffle the input frames,
the quality dramatically drops.

25



Vision Language Models are In-Context Value Learners

Figure 16 | GVL VOC for video and language description pairs. Shuffling enables GVL to pay attention to the
language task description in order to faithfully predict observation values.
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Figure 17 | No-shuffling ablation VOC for video and language description pairs. Removing shuffling makes
VLM output high VOCs independent of task descriptions.
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